A guide to Adaptive Force Matching (AFM) using the tools developed in the Wang Group

Ying Yuan, Ryan Rogers, Feng Wang

Contents
i T A oo [V Ao o OO PP PRR PP 2
2. ObBtain the ULIITIES. ..eeeeieeeee ettt ettt st e st e e e s bt e e sbb e s b e snbe e sareeenbeeeareeesmeeesnrenenne 2
3. Extracting QM/MM configurations for the sampling SteP.......cueecvieriieiiie e e 2
B INTFOTUCTION .t st be e sh st ese e et e e bttt et e sreesaeesree e 2
I o) 4 1 SRS 2
3.3 Utility scripts developed for extracting QM/MM configurationscceeeveereenreenreenreecreeeeeerneenns 3
4. Creation of input files for the electronic structure calculations in the QM/MM step of AFM................. 7
R oY oo (¥ Lot i oY N TP OO PO VRPUPPTOPIIOt 7
4.2 Scripts that generate or update input files for the electronic structure code...........ccccovvvveeerennnns 7
5. Generation of input files for the CRYOFF code that performs the fitting........ccccceeeveivvcieeeeccieee e, 12
5.1 INTFOTUCTION ..ttt st st et b e bt she e st st e s b e ems e e e e enrees 12
5.2 Scripts developed to generate the ref file ... s 13
5.3 Scripts to extract parameters from the .Off ..o 16
5.4 off2ff: update ff file from @ Off file.....coeccriiieee e 19
5.5 Scripts being used by Off2ff.......ceeee e e 23
6. Scripts developed to update/generate topology or tabulated potential files for Gromacs................... 24
6.1 INTrOTUCTION ...ttt ettt b e bt sbe e satesabesaneems e e e e ennees 24
6.2 Update the Gromacs topology and generate tabulated potential files........ccccceevevveeinciieeiinenn. 24
6.3 Scripts being used by off2top and off2tab.........c.coeveieee 29
7. KNOWN LIMITATIONS: ciiiiiiiiiiiiiiiiiiiiciiii et e s b e s s rbae e s s raa s e s 30
8. Language convention and terminology used in the manual..........ccccueiiiiiiii e 30
1 B UL 1=l o= 1] LRSS 31
9.1 Generate the QM/MM FEEIONccuvieeeee ettt et eee e eere e et e et e e reeete e e aeeesreeeeseseesseesseesseean 31
9.2 Generate QM/MM calculation INPUL fIlES.......ccicuiiiiiie et 33
9.3 Generate .ref file fOr CRYOFFo ettt st e s r e e sne e ee s s 34

1. Introduction:

This guide describes a set of tools that can be used to conduct force field developed following the
adaptive force matching (AFM) method as described in the following key publications.

1. Akin-Ojo, O.; Song, Y.; Wang, F., Developing ab initio quality force fields from condensed phase
guantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. J.
Chem. Phys. 129, 064108,(2008)

2. Akin-Ojo, O.; Wang, F., The quest for the best nonpolarizable water model from the adaptive
force matching method. J. Comput. Chem. 32, 453-462 (2011)
3. Wang, F.; Akin-Ojo, O.; Pinnick, E.; Song, Y., Approaching post-Hartree-Fock quality potential

energy surfaces with simple pair-wise expressions: parameterising point-charge-based force fields for
liquid water using the adaptive force matching method. Molecular Simulation 37, 591-605 (2011).

4, Li, J. C.; Wang, F., Pairwise-additive force fields for selected aqueous monovalent ions from
adaptive force matching. J. Chem. Phys. 143,194505,(2015)

A typical execution of AFM iterates through the three steps: the sampling step, the QM/MM step and
the force matching step. A set of utilities have been developed using perl to facilitate the development
of force fields following the three steps.

2. Obtain the utilities.

The utilities can be downloaded from
https://wanglab.uark.edu/CRYOFF/AFM scripts vx.tgz

To use them, execute (note replace vx with the actual version number)
tar -xvzf AFM_scripts_vx.tgz

and put the path containing the scripts in the system PATH.

You can edit the setenv.script file that is distributed as part of the utilities to help you set up the system
PATH.

If you choose to edit the setenv.script file, use it by typing

source setenv.script

3. Extracting QM/MM configurations for the sampling step.
3.1 Introduction

AFM start from the sampling step. The sampling step typically contains several MD simulations
at various conditions the force field is expected to model. The current script supports extracting
QM/MM information when the MD simulations were done with the Gromacs suite of program.
(http://www.gromacs.org/)

3.2 pxyz file

We used an intermediate pxyz (periodic xyz) file format to facilitate the support of other MD or MC
programs in the future.

The pxyz file has the following format.

Number of atoms
periodic boundary condition
atomname xxx yyy zzz molname mark

Example

1536

43.1 43.1 43.1

C 2301 22 857 1CO2 9

O 2219 156 8.05 1CO2 -9
O 2385 288 9.07 1CO2 -9
C 399 2484 1352 2CO2 -9
O 38.86 24.96 14.02 2CO2 -9
O 41.00 2483 13.14 2CO2 -9
C 38.67 12.75 21.05 3CO2 -9
O 39.28 1354 20.41 3CO2 -9
O 38.08 11.94 21.65 3CO2 -9

The number of atoms is a free format integer.

The periodic boundary condition line contains the box vectors that follows the format Gromacs used for
specifying box vectors in the gro file. It is space separated real values in the sequence:

v1(x) v2(y) v3(z) vi(y) v1(z) v2(x) v2(z) v3(x) v3(y)

We note that currently the CRYOFF code and toolset scripts only implemented support for orthorhombic
boxes with vi(y)=v1(z)=v2(x)=v2(z)=v3(x)=v3(y)=0. Thus the last 6 numbers are typically omitted from
the input file.

The atom specification line is space delimited similar to that in a standard xyz file.

Two additional fields are required for each line, molname, is the same of the molecule and should be
different for different molecules. It could be for example 1H20, 2H20.

The sixth field is a mark that is updated by the scripts. Typically, a script will only increase the mark value
with only few exceptions. The typical convention is to have QM atoms being fit to have a higher mark
than QM atoms not being fit, the MM atoms has the lowest mark.

3.3 Utility scripts developed for extracting QM/MM configurations

A general rule of the mark scripts is that the script will only mark up and will not mark down. In other
words, if a script is supposed to mark a certain atom to a value n. If the original mark is already greater
than n, the script will not reduce the original mark.

Unless otherwise specified, all scripts below assume there is only one frame of configuration in the input
file.

-h (-help) option is supported for these scripts. With this option, the usage will be printed.

An argument in [] is optional. When missing the file will be taken from the standard input. All

counting of atoms or molecules start from one. The distance unit is Angstrom.

3

gro2pxyz [grofile]

gro2pxyz reads a grofile as argument or as standard input and write a pxyz as standard output. The
default mark of -9 will be used when creating the pxyz file.

pxyz_2gro [pxyZzfile]

pxyz_2gro reads a pxyz file and converts it to a gro file. The box vector in pxyz will be used for the PBC
information for the gro file.

mark_byname targetname val [pxyzfile]

markbyname marks up all the atoms where the molecule name contains the string targetname. The
molecule will be marked up to val (the second argument).

The script takes the pxyzfile either as an argument or through standard input.
For example,
markbyname solute 2 test.pxyz,

will mark up any molecule with solute as part of its name to a mark of 2.

mark_within ido rcu val [pxyzfile]

markwithin mark up any molecule with a distance of rcu A of atom ido to a value val.

The script will only cause the mark value to increase and will not decrease the mark value even if it is
within rcu of atom ido.

The script takes the pxyzfile either as an argument or standard input.

mark_within_range ido ide rcut val pxyzfile

This script will mark up any molecules within a distance of rcut A of any atom within the range of atomic
indices ido to ide. It calls markwithin for each of the atom within the range. pxyzfile is taken as an
argument and it will be overwritten with the molecules marked.

mark_within_list rcut val pxyzfile atomnol [atomno2 ...]

This script (markup within list of atoms) will mark up any atom within rcut A of the list of atoms,
atomnol, atomno?2 etc.

pxyzfile is the name of the pxyz file, which should be part of the argument list and will be overwritten
after execution.

mark_boundary rcu valm val pxyzfile

This script will mark up any molecule within a distance rcu A of the atoms whose mark equals to vaim.
The atoms matched will be marked up to val.

The script takes the pxyzfile as an argument and uses the markwithin script to do the marking. pxyzfile
will be overwritten after execution.

mark_nextnearest ido ide val [pxyzfile]

This script mark up the nearest molecule of a reference molecule that is defined by all the atoms in the
range of ido ide to a value of val. The nearest molecule to the center molecule will be marked up to val.
The script takes the pxyzfile either as an argument or standard input.

mark_nextnearest_n ido ide nmark val pxyzfile

This script will mark up nmark nearest molecules of the atom range [ido ide] to a value val. It calls
mark_nextnearest N(=nmark) times. The script takes the pxyzfile as an argument.

markup_random valm val [pxyZzfile]

This script will pick a random molecule with a mark of valm and mark it up to val.

markup_mol rcut valm val [pxyZzfile]

This script will mark up a molecule with a mark of “valm” to “val” if there are no molecule with a mark
lower than “valm” within the cutoff rcut.

val should be larger than vaim.

pxyz_dropoff val [pxyzfile]

dropoff will write to standard output a new pxyfile where all atoms with a mark no larger than val will
be removed. The script takes the pxyzfile either as an argument or standard input. It will properly
update the atom number in the first line of final pxyz file.

pxyz_2vxyz [pxyzfile]

pxyz2vxyz creates a new xyz file with the atomic names modified to include the mark as part of the
name. The script will allow easier preparation of input files for QM/MM and also allow easy visualization
with vmd. (vxyz stands for vmd xyz.)

The script takes the pxyzfile either as an argument or standard input.

pxyz_select valm [pxyzfile]

pxyz_select prints all the atoms with valm. The output will be a headless pxyz file.

In addition, the script counts the number of atoms and molecules marked with the value valm, and print
the count to standard error. The script takes the pxyzfile either as an argument or standard input.

pxyz_select_n pxyzfile valm1 [valim2] ...

pxyz_select_n prints all the atoms with a list of mark values valm1, valm2,... The output will be a
headless pxyz file.

In addition, the script counts the number of atoms and molecules marked with the value valm1,
valm2, ... and print the count to standard error. The script takes the pxyzfile either as an argument.

pxyz_sort [pxyzfile]

pxyz_sort write a new pxyz file to the standard output with the atoms sorted according to the mark
value from high to low. The script takes the pxyzfile either as an argument or standard input.

xyz_fix_lineno [xyz file]

xyz_fix_lineno will read in an xyz file from standard input or as an argument, recount the number of
atoms and fix the atom number line of the xyz file. This is used to fix the broken atom number after
processing an xyz or pxyz file.

xyz_add_lineno [xyz file]

xyz_add_lineno will read in a headless xyz file either from standard input or as an argument and add in
the lineno and a comment line to convert the headless xyz into a standard xyz file, which is written to
the standard output

chunk nskip nlines [filename]

chunk will first skip the first nskip lines and then print out nlines. When nlines is larger than the total
number of lines remaining in the file, only the actual remaining lines will be printed.

4. Creation of input files for the electronic structure calculations in the QM/MM step of AFM.
4.1 Introduction

After we get the QM/MM specifications in the pxyz file, input files for QM/MM calculations have to be
created. Each electronic structure code will have to follow a slightly different procedure. So far we
support Molpro, GAMESS, PQS, and Gaussian.

Most scripts described below are designed to only update the geometry information of an existing input
file that has been fully tested to perform the proper QM/MM calculations using the electronic structure
program of choice.

-h (-help) option is supported for these scripts. With this option, the usage will be printed.

4.2 Scripts that generate or update input files for the electronic structure code.

Molpro

pxyz_molpro_upd_geom templ nametrans [pxyZzfile]

pxyz_molpro_upd_geom updates the geometry section of the Molpro input file “templ”. It only supports
GEOMTYP=XYZ in molpro.

With Molpro, the atom name can only be element name followed by numbers. The translation file
(nametrans) translates the atom names in the pxyzfile to the atom type needed for Molpro. The
nametrans file is a text file with two columns. The atom name in the pxyzfile is the first column, the
atom name to be used for the electronic code (in this case Molpro) will be the second column.

If the name used in the pxyzfile is compatible with Molpro, no translation will be needed. In this case,
one can simply use /dev/null as the translation file.

e.g.
H H
HB1 H

HB2 H

HB3 H
oc1 01
0ocC2 02
ow 0]

The updated Molpro input will be printed to standard out. When updating the QM geometry
information, the atom name will be created according to the nametrans file. The name in pxyz file will
be used if no translation is founded. We note that the script will work with a standard xyzfile as input.

pxyz_molpro_gen_lattice chginfo [pxyZzfile]

pxyz_molpro_gen_lattice generates the point charge lattice for Molpro to model the MM region
through coulombic embedding.

The chginfo file provides the information on the partial charges for each atom type in the MM region.
This is a text file with two or three column, with the atom name in the pxyz file in column 1, partial
charges in column 2. The optional column 3 provides the flag value. Molpro uses the flag value to decide
whether gradient on the partial charge should be calculated. If the third column is missing, the flag value
will be 0.

e.g.

HW1 0.6645 O
HW2 0.6645 O
MW -1.3290 O

molpro_replace_field keyword newkey [molpro_input]

molpro_replace_field update a comma separated field in the Molpro input file.

If any field in any comma separated input line contains the “keyword” the “keyword” will be replaced by
“newkey”. The newkey argument cannot have space in it.

One use of this script is to update the file name of the lattice file.
For example, molpro_upd_inp ala_mm ala_mm_22.inp molpro_input.inp

will update the field with ala_mm as part of the lattice file name to ala_mm_22.inp.

GAMESS

pxyz_gms_upd_geom templ znucinfo [pxyzfile]

pxyz_gms_upd_geom updates the QM geometry of the GAMESS input file, which is the atom input in
the SDATA group. The script only supports COORD=CART and only updates the atom geometry
information in the templ file with the new geometry in the pxyzfile. All the atoms in the pxyzfile will be
treated as QM atoms. Thus you may need pipe the pxyzfile through the dropoff script first.

Since GAMESS input identifies atoms through nuclear charges, this information has to be provided by
the translation file znucinfo. Znuinfo is a text file (free format) with two to three columns. The atom
name in pxyzfile is in column 1 and the nuclear charge should be in column 2. The atom name to use for
GAMESS is a combination of a basename and the mark value in the pxyzfile. If a third column exists in
the nucinfo file, it will be used as the basename. Otherwise, the atom name in the pxyz file will be used
as the basename.

Example nucinfo file:

H 1
HW1 1 H
HW2 1 H
C 6
CA 6 C
CB 6 C
N 7

The updated GAMESS input will be printed to standard out.

We note that the script will work with a standard xyzfile as input. Since the mark value does not exist in
a standard xyz file, if a xyzfile is used as input, the mark value will simply be ignored.

pxyz_gms_upd_frag template chginfo [pxyZzfile]

pxyz_gmx_upd_frag updates the fragment section (SEFRAG and SFRAGNAME) to provide location of
partial charges. GAMESS limit the size of each fragment. This script will only work if all charges fit within
one fragment. Only COORD=CART is supported.

The translation file (chginfo) is a text file with two columns, with the atom name in pxyzfile in column 1
partial charge in column 2.

e.g.

HW1 0.6645
HW2 0.6645
MW -1.3290

The updated GAMESS input will be printed to standard out. The name of fragment points has to be
unique for each fragment thus it is created by appending the atom name in the pxyz file by the ‘M’
character and a count from 0.

PQs

pxyz_pqs_gen_xyz nametrans [pxyZzfile]

PQS can read in the geometry through a .xyz input file. (We note the pgs use an xyz file without the
header)

pXxyz_pgs_gen_xyz generates the xyz input file for use with PQS.

The translation file (nametrans) translates the atom names in the pxyzfile to the atom specification
needed for the QM calculation. The nametrans file is a text file with two columns. The atom name in the
pxyzfile is the first column. The atom specification in the pgs xyz file will be replaced by the second
column (if exists).

If different basis set were to be used for an element, PQS requires a special character to be appended to
the atom name, which is the first one or two letter of atom specification. PQS allows the use of the
following special characters: |@#S%"&*+=<>7 .

If no translation is needed, one can simply use /dev/null as the translation file.

A standard xyz file can be used as the pxyzfile for this script.

e.g.
H4 H@
HA4 H@
C4 ce
CA4 c@
N4 N@
04 0@
ow3 0%
HW13 H&
HW23 H&
ow2 O
HW12

HW22

10

pxyz_pqs_gen_pntq chginfo [pxyZzfile]

PQS has multiple ways to specify partial charges. One way (recommended by Dr. Peter Pulay) is to use
the pntq file.

pxyz_pgs_gen_pntqg generates the pntq for PQS.

The translation file (chginfo) is a text file with two or three columns, with the atom names in pxyzfile in
column 1, partial charges in column 2. The default name for point charge in the pntq is “Q”. It will be
replaced by the string in column 3 if column 3 exists.

e.g.

HW1 0.6645
HW2 0.6645
MW -1.3290

pgs_replace_field keyword newkey [template]

pgs_ replace_field will update a keyword in the pgs template file. The updated file will be printed to
standard out. One use of this script is to update the geometry xyz file name. It assumes the fields in each
line is delimited by space. The field contains “keyword” will be replaced by “newkey”.

Gaussian

pxyz_gaussian_upd_geom templ nametrans [pxyzfile]

pxyz_gaussian_upd_geom updates the geometry in the molecule specification section of a template
gaussian input file “templ”. In the template input file, the molecular geometry after the charge and spin
line should be replaced with the word GEOMETRY. The scripts will replace everything from the word
“GEOMETRY” to the next blank line with the atom positions in the pxyz file.

The translation file (nametrans) translates the atom names in the pxyz file to the atom type needed for
the QM calculation. This file has the same format as the translation file for Molpro.

pxyz_gaussian_upd_lattice templ chginfo [pxyZzfile]

pxyz_gaussian_upd_lattice updates the point charges for coulombic embedding in the Gaussian input
file. The Background charge distribution section in the template Gaussian input file should replaced with
keyword “charge_lattice”. The script will replace everything from the keyword “charge_lattice” to the
next blank line with the point charges based on the coordinates in the pxyZzfile.

The charges are provided with the translation file (chginfo). It is a text file with two columns, with the
atom name in pxyzfile in column 1 partial charge in column 2.

11

5. Generation of input files for the CRYOFF code that performs the fitting.

The manual for CRYOFF can be found separately. As of writing of this manual, the link to the CRYOFF
manual is https://wanglab.hosted.uark.edu/cryoff/wanglab CRYOFF.html

5.1 Introduction

After the QM/MM calculation is performed, it has to be converted to the ref files needed for the CRYOFF
code.

The CRYOFF codes needs a ff file for defining the fitting protocol and a ref file for providing the
reference forces.

A ref file may contain any number of frames. For the specification of each frame, it has the following
format:

N_atoms
Comment [box=(xx, Xy, Xz; Yz, VY, YZ; zX, zy, 2z)]
atml x1 y1 z1 Fx1 Fyl Fz1 QM_wt.1 Mol.namel

atm2 x2 y2 z2 Fx2 Fy2 Fz2 QM_wt.2 Mol.namel

NetF xcl ycl zcl FNx1 FNyl FNz1 QM_wt.N1 Mol.namel

Torg xcl ycl zcl Ftx1 Fryl Frzl QM_wt.tl Mol.namel

N_atoms (for the next frame.)

An example of a part of the ref file is shown below:

1800
1

0270470000
8848800000
2191200000
2370300000
3770156667
3770156667
3509600000
0391000000
3443500000
4872700000
5781366667
5781366667

.6880000000
2779000000
.8333000000
.6350000000
+5997333333
.5997333333
.1092000000
.5583000000
.0374000000
. 1846000000
.2349666667
.2349666667

5228100000 .2141485233 -0.6221558195 .8714144624
1968500000 .7629057616 5.3757169111 .3300668164
4631000000 3807359919 -4.3372370081 .0188812948
6456700000 .0000000000 0.0000000000 .0000000000
7275866667 .9294932303 0.4163240836 -9.5224663512
7275866667 .0545494162 6.5308496050 .3336025874
5530000000 .2533459568 -27.8154870225 -1.4021749245
0630000000 .2088906736 20.0755254162 .1087473314
2613000000 .9115678004 1.2803537032 -9.5478009587
.3967000000 .0000000000 0.0000000000 .0000000000
2924333333 .0439769164 -6.4596079031 .1587714481
2924333333 .1384007821 3.5983786671 -1.2767885121

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

-0.
-0.
-0.
-0.
-0.
-0.
-0.
Sl b
-0.
-0.
-0.
-0.

WWWEANWNNNNNN
NNNNNNoooRoOo
el e e T e e

N_atms in the first line specify the number of sites in this frame. NetF and Torq are also considered to
be sites in this context.
12

The second line is a comment line. If the PBC is used when fitting, the box information should also be
included in this line. This line could also include some other keywords. (see CRYOFF manual)

The following are the site information. There are 9 fields for each line.
The first 4 fields are the same as the 4 fields in a standard xyz file. (It can actually be visualized in vmd)
The next 3 fields are the reference forces.

The 8™ field is the solvation factor, which is a weight for each force component. A zero weight will cause
the line not to be fitted.

The last field is the molecule name.

For each molecule, another two components NetF and Torq may be included to provide total force and
total torque. The coordinate for the total torque is the center for the torque calculation for that
molecule.

The unit for length is Angstrom (A) and for force is kcal/(mol-A)

For more detail description, please refer the CRYOFF manual.

5.2 Scripts developed to generate the ref file

ref_gen_stepl_cord molinfo [xyZzfile]

This typically is the first step for generating a ref file.

ref gen_stepl cord writes to standard output a .ref file with only atomic position information. It will
also calculate the center needed for the torque calculations, although the same center will be written as
the position of NetF, it does not affect the fit as net force is insensitive to the center. The weight used to
compute the center is provided through the molinfo file.

comment line

number name solv
atomname weight
atomname weight
[next triggeratom]
[number name solv]
[atomname weight]

next

Example:

CO2 force matching
3 CO2 1.0

13

C 1.0

0] 1.0

0] 1.0
next O

3 H20 1.0
0] 1.0

H 1.0

H 1.0
next

The comment line will be used as the comment line in .ref file.

The sequence of molecule types must be the same in “xyzfile”, however, there could be any number
(greater than 1) molecules of each type, the script assume the same molecule type and keep reading
until the trigger atom specified by the “next” line is encountered.

For each molecular type specification

“number” is the number of atoms in the molecule. “name” is the name of the molecule. “solv” is the
solvation factor of this type of molecule.

The following lines are the name of the atoms (atomname) to be used for the ref file. It does not have to
be the same as those used for the pxyz file.

The atomname is followed by the weight, which is the weight used for the center calculation for NetF
and Torq. If the weights of every atom of a molecule is zero, the NetF and Torqg will not be printed.

The “next” set the trigger atom to inform the script a new type of molecule is encountered. The
triggeratom has to be the first atom of the new molecule in the xyz or pxyz file.

A limitation of the script is that the first atom names of two adjacent molecule types (triggeratom) in the
xyz file cannot be the same.

The final next after the specification of the last molecule type is required.

The input xyzfile has the same format of a standard xyz file except that it does not have the first two
lines. (headless) Molecule sequence in the xyzfile must the same as those in the molinfo file.

If a mistake is made, it is very likely the script never finds the correct trigger atom and generates an
invalid ref file without warning.

Update the forces in ref file

ref_upd_d3_grad d3_grad [.ref]
ref_upd_dlIploy frc dipoly_revcon [.ref]
ref_upd_gmx_frc gmx_force [.ref]
refu_upd_pgs_frc pgs_force [.ref]

ref _upd_gaussian_frc gaussian_frc [.ref]
ref upd_gms _grad gms_grad [.ref]
ref_upd_molpro_grad molpro_grad [.ref]

14

The ref file output produced by refgen_step1 cord does not have any force information. The force
information needed for CRYOFF can be provided with the ref_upd scripts shown above.

Each script requires an input file with gradient or atomic forces. Reads an input ref file either as an
argument or through standard input and write a new ref file to standard output.

Each script read in the atomic force values from the input ref file, and add the value to be incorporated
(updated) to the current values.

There d3 means output of Grimme’s dftd3 code. dlpoly stands for DLPOLY, gmx standard from gromacs,
pgs stands for PQS, gau stands for Gaussian, gms stands for GAMESS, molpro stands for Molpro.

grad in the file name indicates that it expects to read the energy gradient information.
frc in the file name indicates it expects to read the force information, which is negative of the gradient.
This is chosen to be consistent with the default output specific for each electronic structure code.

The file specified as the first argument, which contains either force or gradient information, can be
extracted from the output file of the electronic structure program with the following scripts.

dftd3: use getd3frc func xyzfile .

Gromacs: follow the steps in get_gmx_frc

PQS: PQS write a .grad file, which is compatible. Alternatively, you can use pgs_extrac_frc pgs_output
DLPOLY: The REVCON file is used as the force file.

Gaussian: gaussian_extract_frc Gaussian_output

GAMESS: gms_extract_grad GAMESS_output

Molpro: molpro_extract_grad molpro_output

These scripts write the force (frc) or gradient (grad) information extracted from the respective output
files to standard out. This extracted information is compatible with the ref_upd_ scripts above.

getd3force func xyzfile

getd3force will call dftd3 code to calculate D3 dispersion forces. We note that the script will only run if
the dftd3 executable is in the PATH. The energies and forces will be written into the files with the same
name as xyzfile with the extensions of .eng and .d3.grad.

The func is the functional type supported by dftd3. The damping method is BJ, which is set in the script
and can be easily updated.

get_gmx_frc grofile templatedir

get_gmx_frc does a single point calculation for a frame in grofile and then extract the forces of this
frame. The script needs mdrun_d in the PATH. The calculation will be performed in the templatedir
directory. This directory should include a top file named “template.top”, a mdp file named
“mdrun.mdp”. If table files are needed, they should also be provided and with “mdrunoptions” variable
properly set in the script.

15

A file “input_ndx” is needed to make the index file for this frame. This file is the input to the make_ndx
command of gromacs.
The name for force file will have an extention .gmxfrc.

The script calls the " top_upd_mol_nu" script to update the number of water (SOL) in the top file
automatically based on the grofile.
The script may need to be tailored for different systems.

ref_upd_net [.ref]

ref_upd_net calculates the molecular forces and torques and updates the NetF and Torq field of the ref
file. The center of reference is based on the x, y, z coordinate of the Torq entry. The coordinate for the
NetF entry is ignored. The input .ref can be taken as an argument or from the standard input. The output
is written to standard out.

The script ignores existing values of the force and torque current in the input .ref file.

xyz_add_msite atm1 atm2 atm3 M [xyZzfile]

addmsite will add the position of dummy site for BLYPSP-4F water. This is the geometry shared for all
water models developed to date in the Wang group. (WAIL, B3LYPSP-4F) This is needed when the QM
reference calculations do not have the M site. And the M site is needed for fitting.

atom1, atom2, atom3 are the names of the three atoms used to specify the water. The oxygen must be
the first atom. The fourth argument is the name of the virtual site.

“xyzfile” is the standard xyz file. Since the pxyzfile and .ref file all formatted similar to an xyz file. The
script also properly add M site locations to pxyzfile. When M site information is to be added to an .ref
file , the ref_fix_msite script is needed to add missing information since this script only writes the
coordinate information.

ref_fix_msite M [.ref]

reffixmasite will fix the forces, solvation factor, and molecule names for M site added with
xyz_add_msite.

5.3 Scripts to extract parameters from the .off

These scripts can be used to extra fitted parameters from the .off file for inspection, for updating .ff file,
or for updating the .top file for gromacs.

16

offget_inter file.off intkey,[InA[-B], [InA[-B] [intkey,[InA[-B], [InA[-B]]...

Gets the intermolecular interaction terms from .off file.
file.off is the .off file.

intkey is the CRYOFF interaction names in the .off file. It might be a good idea to use more informational
names such as EXPinter, EXPintra when writing the .ff file. This is an exact match for the interaction
name not a substring match.

Optionally a line number (In) or a range of line numbers can be specified. [InA[-B]] (A and B are line
numbers). More than one line ranges can be specified for each key. They should be separated by
comma.

For example,
offget_inter test.off EXP POW,In1,In3-10 STRC,In8
The entire EXP potentials in the test.off file will be extracted.

The line 1, and 3 through 10 for the POW and line 8 for the STRC will also be printed.

offget_intra file.off molname

Get the intramolecular parameters of the molecule molname from .off file.
file.off is the .off file name and molename is the molecule name in .off file.

This script will print a summary of all intramolecular parameters.

offget_atmtype file.off molname

Print out the all the atoms types in the molecule molname

offget_charge COU,atm1/atm2,chgdiv,InA[-B][,InA[-B]] file.off

Get the fitted charges from the off file, file.off.

The first argument contains comma delimited fields that describe the position of the charges to be
extracted. The first field can be COU or THC(Thole damped coulombic). The second field can be either
atm1 or atm2, if atm1 is specified, the name of first atom of the charge products in .off will be printed
first, otherwise the second atoms will be printed first. The third field, chgdiv, determines how to obtain
the charge. If chgdiv is a number, the charge product will be divided by the number, if chgdiv is sqrtp or
sqrtn, the positive or negative square root of the product will be obtained.

17

The field InA tells script to get the charge product from line A (e.g. /In5). One can also use more than one
line or ranges, see the description for offget_inter

offget_tabparam file.off [atom1 atom2:atom3 ...]

Extract the table file generation directives from the table potential section of the .off file.

By default, the offget _tabparam script will print table directives for all pairs listed in the file.off. This list
can be shortened using the optional arguments. If a single atom (atom1) is provided as one of the
optional arguments, any atom pairs involving this atom name will be omitted. If a pair of atoms
(atom2:atom3) are provided, any pairs that can be formed by these two atoms are omitted. (For
example, atom2-atom2 pair is omitted.)

offgen_tab protocol file.off

This script generates tabulated potentials in the Gromacs tabulated potential form according the
parameters in .off file (file.off).

The protocol file has one or two fields in the following format
grid-definition [output]

E.g. [debug,]2.0,0.002 [pair=H1~01][,prefix=Ala7]

The grid-definition field provides the cutoff and grid spacing, (2.0 nm, 0.002 nm) in the example. The
first entry can also be debug. The debug entry tells the script to keep all intermediate files that contain
each term of the potentials.

The output field is optional. It could contain a prefix entry or a pair entry. If a pair entry exists, only the
tabulated potential for the pair (in the atomA~atomB format) will be created. If no pair entry exists,
tabulated potentials for all possible pairs will be generated. The prefix entry controls the name for the
tabulated files generated.

The POW, -6, term will be put as the attractive potential. All other short-range terms will be put in the
repulsive potential columns of the table file. The coulombic columns in the table file will be computed

using ¢,9 /472'80F , Where the charge product giq;is extracted from the .off file. This is mostly to make
the plotting of the interactions easy since the plotting program only need access to the tabulated
potential file without the need to look up charges from another source. However, such a tabulated

potential cannot be used for coulombic=user in Gromacs, since Gromacs requires such user coulombic
column to be 1/r.

18

offget_frc file.off [ref/fit/dif] [nef/torq]

This script extracts the forces from .off file (file.off). (only the forces reported in the .off file will be
printed.)

The first optional argument species whether the reference (ref), the fitted (fit) or the difference of fitted
of reference (dif) forces will be extracted. The default is fitted forces.

The second optional argument species whether the net forces(netf) or the torg(torq) will be extracted.
The first optional argument should be provided if the second one exists. The default is to print all forces
including atomic forces and molecular net force and torques.

5.4 off2ff: update ff file from a off file.

It is recommended to generate the .ff for the initial fitting manually. The scripts are designed to update
these files for subsequent fits. Not for generating a .ff from scratch.

The Gromacs command pdb2gmx can be used to generate the bonds, angles, dihedrals and the
nonbonded interactions, including the exclusions. It is very useful for generating the initial .ff file.

Update a .ff file based on a.off file is needed during the fitting steps of AFM. This is accomplished by
off2ff.

off2ff protocol file.off input.ff out.ff

Four files are provided as arguments. The first argument is the name of the protocol file, which directs
the transcription of parameters. The format of the protocol file is described below. file.off is the name of
the .off file used to provide parameters. The input.ff is the name of the input .ff file where the
parameters will be updated. The updated .ff file is written to the out.ff file.

The protocol file uses the following format:
action off param ff param

or
condition conditions rm/enable off param ff param

action can be copy (copy parameters), populate (populate section with parameters), charge (update
charge products), or condition (update parameters according to condition)

(a) An action of copy directs the off2ff script to copy parameters from .off file to .ff file.

copy COU,col4 COU,col4
copy COU,col4,In1-10,In15 COU,col4,In1-10,In15

The second field (off_param) defines the positions in the .off file where the parameters are taken.
19

It is worth noting that when counting the column in the .off file. The atom pair name such as OW~01 is
always count at two columns. This is due to the service script offget_inter always treat this as two
separate columns.

And the third (ff_param) field defines the positions in .ff file where the parameters should be updated.
The parameter position fields contain comma delimited entries.

The second entry of the off_param is the column number (eg. col4). In the example above, the 4"
column in the COU section of the .off file will be used to update the 4™ column of the COU section in
the .ff file. The script assume there is a one to one correspondence (in sequence of interaction specified)
between the .off file and the .ff file. Use this with caution. We note this case, the ff param field must
also have two entries with the second entry being the column to be updated.

A third (optional) entry can be specified for the off_param field, listing range of lines. In this case, only
the corresponding column of the specific lines are updated. The ff_param fields must also specify the
same number of lines. A one to one correspondence in the range specified is expected. The lines that
have been commented out in .ff file will still be counted when updating. Thus, the comment indicator
will be ignored. The design is to ensure lines removed automatically by the script won’t affect the of line
number count.

We note that for the copy action corresponding line selections in the off param and ff_param must
have a one-to-one correspondence.

(b) An action of populate directs the off2ff script to populate a section of the ff file using parameters
from .off file

populate EXP[,In1-8,In15] EXP, fix/fit

The second (off_param) field defines the section in the .off file where the parameters are taken.

And the third (ff_param) field defines the section in .ff file where the parameters are to be populated.
The new parameters are to be added to the selected section in the .ff file.

For the off _param, the first entry is the interaction type. The line number specification can be ignored,
in this case all interactions with this type will be copied.

The second entry for the ff_param field can be either fix or fit. The corresponding parameters
populated will be set to either fix or fit based on this entry.

(c) action charge updates the charge products in the ff file.

charge neutral COU,col4,In64-156
charge file=chargefile COoU,col4,In64-156
charge COU,atm1,chgdiv,In8,In12,In16 COU,col4,In64-69

20

ff param has comma delimited entries.

The first entry of the ff param is the interaction type, which has to be either COU or THC. The second
entry has to be col4, since the charge product is always the 4™ column in the .ff file. The third entry are
line specifications as described above.

In many cases, the charge product can be updated using the copy action. In certain scenarios, for
example intramolecular coulombic derived from intermolecular fit, one has to calculate the required
charge products with the charge action.

Neutral is a special off parameter, in this case, the charge product lines specified in the ff parameters are
reset to zero. This is useful for completeness checks for later charge product updates in that any charge
product of zero was not properly updated.

The off_param are also comma delimited entries.
The off_param field provides charges needed for the script to compute the charge products.

There are two ways to specify the charges. One is relying on the .off file, by calling the offget charge
script. In this case, the off_param field is the argument to be passed to offget charge.

For the example, (COU,atm1,0.6688,/n8,In12,In16),
the charge used will be the charge of atm1 computed based on lines 8, 12, and 16 in the .off file.

The script will go through the lines specified in the ff param field and update charge products for all the
pairs with both atom charges available. (through off param). Other charge product are left as is.

Alternatively, the off param field could provide a file (file=chargefile). chargefile is a file that contains a
list of atomic charges. (free format one charge per line as the example below) The charges needed for
the charge product will be read from the file.

H 0.13328

H1 0.12905

H2 0.41648

H3 0.45138

(d) condition: remove or enable interaction terms in .ff file based on conditions.
condition conditions rm/enable off param ff param

The conditions field can select parameters to remove or enable based on distance(dist), parameter value
(val,max,min) or charge product(chgprod) in the .off file.

See example.

condition | dist,gt,3.0 rm STRC,In1-10 STRC
condition | dist,gt,3.0 rm STRC,In1-10 POW
condition | dist,gt,3.0 rm STRC STRC
condition | dist,gt,3.0 rm STRC POW

21

condition val,gt,0.0 rm STRC,col4/[,In31-33] STRC
condition val,gt,0.0 rm STRC,col4[,In31-33] POW
condition val,gt,3.0 rm STRC STRC
condition val,gt,3.0 rm STRC POW
condition | max rm STRC,col4[,In31-33] STRC
condition | max rm STRC,col4[,In31-33] POW
condition | max rm STRC STRC
condition | max rm STRC POW
condition | chgprod,gt,-0.25 | rm COU,atm1,chgdiv,In8,In12,In16,In20 STRC,In31-33
condition | chgprod,gt,-0.25 | enable COU,atm1,chgdiv,In8,In12,In16,In20 COU,In64,In80
condition | chgprod,gt,-0.25 | enable file=chargefile THC,In1-4,In7

dist,gt,3.0 means if the minimum distance is greater than 3.0 A.” gt” can be replaced by It (les than), ge
(greater equal) and le (less equal).

val,gt,0.0 means if the parameter value in the column specified is greater than 0.0. “gt” can be replaced
by It, ge and le.

max means the maximum value of the parameters in the range of lines specified. “max” can be replaced
by llmin”

chgprod,gt,-0.25 means if any charge product specified in the lines in the ff_param field is greater than -
0.25.

rm/enable controls whether the line (or lines depending on the condition) should be enabled or
removed.

For distances and value conditions, the script will check for all the lines specified in the off _param field,
enable or remove the lines corresponding to the atomic pairs in the corresponding section in the
ff_param field.

The off_param field follows the convention of interaction type[,line number] for distance conditions,
interaction type, column number(,line number] for values. The column number specifies the column
number of the parameter to be checked.

The ff_param field should be section name for the interaction type for distance, and value conditions.

For example,

condition val,gt,0.0 rm STRC,col4[,In31-33] POW

scans line 31 to 33 in the STRC section in the off file look for any value in column 4 that is greater than
0.0, once a much is identified, the corresponding entry (for the same pair of atoms) in the POW section
of the .ff is to be commented out. (remove)

22

For charge product, the off_param follow the same format of the charge action (see (b) above), all the
charges needed for computing the charge products in the ff param lines must be present, otherwise,
the charge products will be assumed to be zero.

The ff_param specifies the interaction type and line numbers for the charge product condition. The lines
commented out will be counted for the line number specifications.

For example,
condition chgprot,gt,-0.25 rm COU,atm1,chgdiv,In8,In12,In16,In20 STRC,In31-33

Scans line 31 to 33 of the shifted-truncated-repulsion section, computes the charge products for the
atom pairs encountered based on the atom charge from the offget_charge script and disable lines with
charge product greater than -0.25.

5.5 Scripts being used by off2ff

These scripts are service script for off2ff that must be in the PATH for off2ff to function. They can be
used alone. The usage for most of these script will not be elaborated since there is generally no need for
the end user to use them.

offget_inter: get inter potentials from .off file.

offget_intra: get intra potentials from .off file

offget_charge: get fitted atom charges from .off file.

offget_tabparam: get tabulated potential parameters form .off file

offget _atmtype: get atom type of one molecule.

ffgetpam: get parameters from .ff file by line number.

ffupdbynum: update .ff file according line number.

ffaddremtermbynam: add or remove terms of .ff file according atom names.

getcharge: calculate charges based on charge product.

off2ff_copy: copy parameters from .off to .ff.

off2ff_charge: calculated charge product and update the .ff file.

off2ff_bymindist: add or remove terms based on the minimum distance of two atoms.
off2ff_byvalue: add or remove terms based on the fitted parameters.

off2ff_bymaxminpam: add or remove terms based on the fitted maximum or minimum parameters.

off2ff_bychgprod: add or remove terms based on the fitted charge product.

23

6. Scripts developed to update/generate topology or tabulated potential files for Gromacs.

6.1 Introduction

Gromacs allows the same force field to be defined in several possible ways. With our scripts, it is
recommended to create Gromacs topology using the following procedure.

Below, we will use the term topology file to refer to either the .top or .itp file of Gromacs.

In gromacs, it is possible to separate the force field definition into molecular definition files and
parameter files. For more complex molecules, it is probably easier to use the parameter files.

We recommend to create a separated molecular definition file for each molecule type.

To use our scripts, one has to first generate an initial topology files and our scripts are designed to
update an existing topology file with new parameters. The pdb2gmx script distributed with gromacs is
very useful to generate the initial topology file.

The parameter file can include the non-bonded and bonded sections. It is generally more convenient to
create multiple parameter files for these sections.

The non-bonded section includes [atomtypes] and [nonbond_params].

When using our scripts, we recommended to use bonded sections in the parameter file instead of define
the bonded parameters in the molecule definition files.

The bonded sections may include [bondtypes], [angletypes] and [dihedraltypes].

6.2 Update the Gromacs topology and generate tabulated potential files

The update of parameter and molecule definition files, including generating the tabulated potential files
are accomplished by the script off2top.

off2top protocol file.off templtop outtop

The off2top script is the main script to update the parameter and molecule definition files.

protocol is the protocol file used to define the rules for the update. file.off is the CRYOFF .off file for
extracting parameters. templtop is the template topology file based on which the output topology file
outtop will be written.

The protocol file uses the following format:
action off param top_param [unit] control
The off_param is typically passed to the off_get* scripts and the syntax is similar to that used for off2ff.

The top_param has three or more comma delimited entries. When updating parameters, the first entry
is the section name in the topology file such as [atomtypes], the second entry is the column number
(cold) , follow by line specifications. When updating molecular specification, the first entry is the

24

molecule name (ALA7), the second entry is section name, the third and fourth entries are column and
line numbers. More than one line number fields are always supported.

The unit field is included for updating parameter, but not for generating lists. When the unit field is
present, the parameter extracted from the off file is multiplied by the number in the unit field before it
is written to the topology file.

() Actions for updating the “parameter files”
(a) Atomic charges

Action pam.charge will update the atomic charges in the parameter section [atomtypes] of a
gromacs topology file.

Example:

pam.charge | COU,atm1,0.6645,In8,In10,In12 | atomtypes,col3,In1-3 | 1.0 | default
pam.charge | file=chgfile atomtypes,col3,In1-3 | 1.0 | type=filename

The off_param field is the charge position in the .off file. This field has the same format as the first
argument of offget_charge.

The top_param field is the position of charges that to be updated in parameter file. For gromacs, the
first two fields should be atomtypes,col3.

The script looks up atom names for the lines specified in the top_param field and obtained the
required charges from the lines in the off_param field. When the off_param field specify a file, the
charges will be looked up from file.

For charges, the unit field should always be 1.

The control field can be used for atom type conversion. “default” indicates the same atom types will
be used for CRYOFF and Gromacs. If type=filename is provided, atom type translation will be done
based on the name pairs in the file filename. The file has two columns, the first column is the atom
type used by Gromacs, and the second is the atom type in CRYOFF. If the atom type used in Gromacs
is not found in the translation file, no atom type translation will be done.

In the translation file, lines start with # will be treated as comment lines.

Example translation file:

#Gromacs | CRYOFF
H1 HB1
HW HWAaf
C1 CA

25

(b) Nonbonded list

This action will add the list of pairwise nonbonded interactions to the topology file, to populate the
[nonbond_params] section. The atom pairs that only have coulombic interactions between them
will not be added.

Example:
list.nonbond default nonbond_params[,1,1.0,1.0] | default
list.nonbond HW~MW,HW~0W,HMM,MMM | Nonbond_params type=filename

The off_param field specifies the exclusions that is passed as the 2"¢ argument of offget_tabparam.
“default” indicate all pairs without any exclusion will be added.

The top_param field is the nonbonded section name [nonbond_params] followed with the function
type and parameters for functions. The function type and parameters are optional. The default function
type is 1 and the parameters are 1.0. (as in the example)

The control field is used for type conversion. It can be default or type, which have the same meaning
as the control field in section | (a).

(c) Nonbonded parameters:

Action pam.nonbonded will update nonbonded parameters in parameter file section
[nonbond_params].

Example:
pam.nonbond | STRC,col4 nonbond_params,col4,in1-10 4.184 | default
pam.nonbond | STRC,col4 nonbond_params,col4,in1-10 1.0 type=filename

The off_param field is the parameter position to be extracted from the .off file. This field contains
the potential name in .off and the column number. The column number is actually the column position
of the output of offget_inter, which was made to be the same position as the parameter in the .ff file.

The top_param, unit, and control has the same format and meaning as those for the pam.charge
action described in section | (a).

(d) bonded list

Action list.bonded will add the list of nonbonded interactions to the parameter file, to the section
[bondtypes], [angletypes] or [dihedraltypes].

Example:

| list.bonded | ALA7 | bondtypes|,1] | default

26

list.bonded ALA7 angletypes/[,1] type=atmtype
list.bonded ALA7 dihedraltypes[,9] intkey=har
list.bonded ALA7 dihedraltypes[,9] type=atmtype,intkey=har

The off_param field is the molecule name in the .off file.

The top_param field contains the section name in the topology file. A number can be appended
after the section name, which will be used as the function type in the topology file. The default
function typeis 1.

The control field can be default or type as discussed in section I(a).

The intkey keyword also in the control field allows selective construction of the list in the section
selected by the top_param field. If a type of interaction is specified with intkey=inttype. Then only
the specified type of interactions from all the interactions extracted according to the top_param
field will be added to the list constructed.

Bondtypes, angletypes and dihedraltypes parameters

Action pam.bonded will update the bonded parameters in the gromacs parameter file section
[bondtypes], [angletypes] or [dihedraltypes].

Example:
pam.bonded ALA7,col4 bondtypes,col4,In1-8 1.0 default
pam.bonded ALA7,col4 angletypes,cold4,In1-20 1.0 type=filename
pam.bonded ALA7,col4 dihedraltypes,col7,In1-8,In10 1.0 extra:col5=col8
pam.bonded ALA7,col4 dihedraltypes,col7,In1-8,In10 57.29 | default

The off_param field specifies the parameter position in the off file.
The format is the molecule name (e.g. ALA7) followed by the column (e.g. col4) number.

The top_param field is the position in the parameter file. The position is specified by the section
name, (e.g. bondtypes) followed by the column (col4) number and line number (In1-8).

The unit field is the unit conversion from CRYOFF to Gromacs. The parameters from CRYOFF will
multiply this value before updating the topology file.

The control field can be default, which means the atom types are same for Gromacs and CRYOFF,
alternatively, a file can be supplied with type=filename. In this case, the name translation between
Gromacs and CRYOFF will be done according this file.(See translation file example in Sec 1(a)).

When updating dihedrals occasionally there are more than one torsional terms for each dihedral. In
order to distinguish these terms, the extra keyword can be put in the control field.

27

extra:colA=colB. This will direct the script match up colA in the .off file and colB in the gromacs
parameter file in addition to the specification of the interaction (eg. C1_C2_01_H1) before updating
the parameter.

With the extra column constraint also works for other bonded interaction types although it was
designed primarily to update dihedral parameters.

(I1) To update molecular definitions:

(a) Atom charges

mol.charge COU,atm1,0.6645,In8,In10 | Ala7,atoms,col7,In1-13 | 1.0 default
mol.charge file=chgfile Ala7,atoms,col7,In1-13 | 1.0 type=atmtype

The mol.charge section follow the same format as the pam.charge action except this action updates
the gromacs molecule definition file.

(b) Bonds, angles and dihedral

mol.bonded ALA7,col4 Ala7,bonds,col4,In1-72 1.0 default
mol.bonded ALA7,col4 Ala7,angle,col4,In1-129 1.0 type=atmtype
mol.bonded ALA7,col4 Ala7,dihedrals,col7,In1-8,In10 1.0 extra:col5=col8

The mol.bonded action update the gromacs parameter file. This section is similar to the
pam.bonded action except for the top_param field.

For this action, the first two entries of the top_param field are the molecule name and the section
names in molecule definition files, respectively.

off2tab protocol file.off topology.top

The off2tab script is used to generate the tabulated potential files.

protocol is the protocol file used to define the rules for the tabulated file generation. file.off is the
CRYOFF .off file for extracting parameters. topology.top is the topology file based on which the pairs
needing tabulated potential is determined.

The protocol file uses the following format:
action grid_line_field control

The action can be tab.nonbond or tab.bonded
(a) Generate nonbonded tables

Action tab.nonbond will generate tabulated potentials for selected pairs in the [nonbond_params]
section of parameter file.

tab.nonbond [debug,]3.0,0.005,In3 | no
tab.nonbond 3.0,0.0005,In1-9,In15 | scale=C6,type=atmtype,prefix=Ala7
28

The grid_line field is used to provide grid-specifications followed by a series of line numbers. (comma
delimited).

The grid specifications should consist of the cutoff (3.0nm) and grid spacing (0.0005 nm). The line
numbers specify the line numbers in the [nonbond_params] section of the template topology file. If a
debug entry is provided before the grid specifications, the script will keep all intermediate files that was
generated in the construction of the final table file.

The columns for coulombic interaction in the tabulated potential files is filled with the 1/r and 1/r?
for undamped coulombic interactions.

The control field support the following keywords: type, scale, prefix.

“type” specifies the name conversion file to convert names used by CRYOFF and Gromacs. “prefix” is
the prefix of the generated table files. “scale” only affects the POW, BUK, and TTP types of interactions.
The power law terms in these potentials will multiplied by the value specified with the scale=value
entry. If entry is scale=C6, the attractive potential in the gromacs tabulated potential file is multiplied by
the reciprocal of the power law prefactor.

The off2tab script also write a tab_list file, the tab_list file list pairs of table potentials generated to be
used to populate the energygrp_table in the gromacs mdp file.

Example work flow for updating the topology file:

For complex molecules, one way to generate the topology file is to use the following steps:

Step 1: update the parameters in the nonbonded itp/top file. (off2top section I. c) Update the
nonbonded list if necessary. (off2top section I. b)

Step 2: generate tabulated potentials according the list of nonbonded interactions. (off2tab)
Step 3: updated the parameters in bonded.itp. (off2top section I. e.)

Step 4: update the molecule charges in molecule definition file. The atomic charge can be updated both
in the parameter file or molecular definition file. The values in the molecular definition file supersedes
that in the parameter file. Thus if the molecular definition file is used, one should follow the off2top
section Il.a

6.3 Scripts being used by off2top and off2tab

The off2top scripts is developed based on following service scripts. The service script listed below can
also be used independently.

topgetparam_paramfile: get parameters from parameter file.

topupdate_paramfile: update parameters of parameter file.
29

topgetparam_moldef: get parameters from molecule definition file
topupdate_moldef: update parameters of molecule definition file
topadd_nonbondedlist: add pairs to [nonbond_params]
gentab_pow_ttp_srd: generate POW/TTP/SRD potentials.
gentab_exp_buck_strc: generate EXP/BUCK/STRC potentials

gentab_thc: generate Thole damped coulombic interaction

off2top_nonbonded_charge: update the atom charges in parameter file.
off2top_nonbonded_list: update the list of nonbonded interactions in parameter file.
off2top_nonbonded_param: update the nonbonded parameters in parameter file.

off2top_nonbonded_gentab: generate the table files according the off file and the nonbonded list in
parameter file.

off2top_bonded_list: update the list of bonded interactions in parameter file.
off2top_bonded_param: update the parameters of bonded interactions in parameters file.
off2top_molecule_charge: update the atom charges of the molecule.

off2top_molecule_bonded: update the bond and angle parameters of one molecule.

7. Known Limitations

(1) For .ff and Gromacs input files, comment characters can only appear at the beginning of the lines. If
appear in other position, such as the middle or the end of one line, the script won’t interpret anything
after the comment characters as comments.

(2) For the .ff file, in order to use the scripts correctly, two sections with the same section name are not
allowed, for example, you cannot have two EXP sections. But you can name these sections as EXPinter
and EXPintra in the .ff file. Thus naming will not change the fitting results, but can allow the scripts to
function correctly.

(3) For Gromacs topology files, the scripts do not support two sections with identical names in one
parameter file. Also, for each [moleculetype], the script won’t support two sections with identical
names.

8. Language convention and terminology used in the manual

explanation example

Italic name of scripts, input arguments for scripts, protocols, gro2pxyz

30

executable examples.
colA specify a column number col3
InA specify a line number In3
InA-B specify a range of line numbers In5-9
[abc] optional arguments gro2pxyz [grofile]
/ OR fit/fix
gt Greater than
ge Equal or greater
It less than
le equal or less
rm Comment out line(s) for a file
enable Delete the comment character before line(s)
add Add line(s) to afile
.ref input reference file for CRYOF
Jf input fitting file for CRYOFF
.off output file from CRYOFF

9. Usage example

We will use the development of an alanine potential as an example.

9.1 Generate the QM/MM region

Assuming the sampling is done with gromacs, an initial conformation will be prepared where each
molecule is made whole and the box is centered using the molecule to be the center of the QM region.
When doing so, one does not need to worry about periodic boundary conditions later in the workflow.

With gromacs one way to achieve this is
gmx_d trjconv -s ../topol.tpr -n ../index.ndx -f ../traj_comp.xtc -dt 30 -pbc atom -center -o temp.xtc

gmx_d trjconv -s ../topol.tpr -n ../index.ndx -f temp.xtc -pbc whole -sep -o alpha.gro

To create a pxzy file for the QM/MM calculation for the hydrated alanine, we can do the following:
Stepl: prepare pxyz file from gro file

Assume the MD was run with gromacs, we first create the pxyz file with

gro2pxyz alpha0.gro > alphaO.pxyz

Step2: Define the QM/MM region.

Let’s assume we use the following protocol (underlined) to define the QM/MM region.

31

(a) The Ala7 is included in the QM region.

mark_bynam ALA 4 alpha0.pxyz > temp ; mv temp alphaO.pxyz

Here we will use a mark value of 4 for Alanine atoms.

(b) If a water molecule has any atom within 4.5 A of a carbon atom or within 3.8 A of any other Ala4
atom including the hydrogen atoms, it will be included in the QM region.

mark_within_range 1 73 3.8 2 alpha0.pxyz

This command will mark all molecules within 3.8 A of any Alanine molecule, which is atoms 1 to 73 to a
value of 2.

Followed by
mark_within_list 4.5 2 alphaO.pxyz57 111517212527 31353741454751555761656771
This command will mark all atoms with 4.5 A of the carbons atoms 5, 7 71 to a mark value of 2

(c) Randomly select five water molecules from the inner QM region. All the water molecules within 2.6 A
of the selected water molecules will be included in the QM region.

In the first step, mark 5 random water.
markup_random 2 3 alpha0.pxyz >temp ; mv temp alphaO.pxyz

five times. Or you can do
markup_random 2 3 alpha0.pxyz| markup_random 2 3 | markuprandom 2 3 | markup_random 2 3 |
markup_random 2 3 > temp,; mv temp alpha0.pxyz

or you can write a loop in your favorite scripting language.

In the second step, mark up all MM water with 2.6 A of these water to solvation factor 0 water.
This can be accomplished by

mark_boundary 2.6 3 2 alphaO.pxyz

(d) the Ala7 and any water without MM point charge within 2.6 A will be hydration factor 1.

markup_mol 2.6 2 3 alphaO0.pxyz > temp ; mv temp alphaO.pxyz

This script will increase (markup) the mark of molecule thus raise hydration factor 0 water to hydration
factor 1.

After this step, all the solvation factor 1 water have been marked as 3, solvation factor O water have
been marked as 2.

(e) All water molecules within 7 A of Alas heavy atoms but not included in the QM region are identified
as MM molecules.

32

mark_within_list 7.0 1 alphaO.pxyz15711121315172122232527313233353741424345
4751525355576162636567717273

After the QM/MM region are defined, the other atoms should be dropped by by
pxyz_dropoff 0 alphaO.pxyz > temp;, mv temp alphaO.pxyz ,

since they are not needed for the QM/MM calculation anymore.

To make it cleaner, molecules can be rearranged by pxyzsort

pxyz_sort alpha0.pxyz >temp;, mvtemp alphaO.pxyz;

9.2 Generate QM/MM calculation input files

We will need to create input files for the QM/MM calculations. For some electronic structure codes,
scripts have been created to update an existing input file with new QM/MM configuration specifications
for each frame in the training set obtained in the sampling step.

If molpro is to be used to perform the QM/MM calculations, the Molpro input file (.inp in the example
below) can be updated as below

pxy_dropoff 1 alphaO0.pxyz|grep -v MW [xyz_fix_lineno [pxyz_upd_molpro ala_molpro_templ.inp
nucinfo.molpro > alphaO.inp

In this example, the ala_molpro_templ.inp, is the molpro input file properly configured to perform
the QM/MM calculation. The alpha0.inp file is the new molpro input file taking configuration from
alpha0.pxyz. QM atoms with hydration factor 1 and 0 are marked with values of 2 and higher. The grep
command was used to remove the M site in water.

To provide MM information for the molpro calculation, we put the point charge lattice in a file,
named alpha0_mm.inp

pxyz_select 1 alpha0.pxyz|grep -v OW|[xyz_add_lineno |pxyz_gen_molpro_lattice chginfo.molpro >
alpha0_mm.inp

Then, the lattice file name in molpro input file can be updated with the follow command

molpro_replace_field INFILE INFILE=alphaO_mm.inp alphaO.inp > temp ; mv temp alphaO.inp

If GAMESS is to be used to perform the QM/MM calculations, the input files can be prepared/updated
with the following command.

For the QM region,

33

pxyz_dropoff 1 alpha0.pxyz|grep -v MW/ xyz_fix_lineno[pxyz_upd_gms ala_gms_templ.in
nucinfo.gms > alphaO.inp

Here ala_gms_templ.in is the working GAMESS input file designed to perform the QM/MM
calculation.

GAMESS supports MM partial charges. However, the way GAMESS implement the MM charges is
quite cumbersome. You will have to define fragments in the fragment section of a GAMESS input file.

pxyz_select 1 alphaO.pxyz|grep -v OW |[xyz_add_lineno [pxyz_upd_gmsfrag alpha0.inp chginfo.gms >
temp ; mv temp alpha0.inp

If PQS is to be used to perform the QM/MM calculation, the following commands can be used to create
input files.

PQS can read a headless xyz file as molecular specification. It can be generated with the following
command.

pxyz_dropoff 1 alpha0.pxyz|grep -v MW [xyz_fix_lineno |pxyz_2vxyz [pxyz_gen_pqs_xyz
nucinfo.pqs > alpha0.xyz

The name of the headless xyz can be updated in the PQS input file using the following command:
pgs_replace_field FILE FILE=alphaO.xyz ala_pqs_templ.inp > alphaO0.inp

There are multiple ways in PQS to specify partial charges. Some older version of PQS may not
support all the methods for partial charge specification. This command provides the .pntginp that can be
used for newer version of PQS.

pxyz_select 1 alpha0.pxyz|grep -v OW|[xyz_add_lineno |pxyz_gen_pqgs_pntq chginfo.pgs>
alphaO0.pntqinp

9.3 Generate .ref file for CRYOFF
An example procedure for generating the .ref file are shown below:

a) prepare a headless xyz file contains atom positions used to construct the ref file. The position unit is
angstrom. You can use either the QM calculation output file to extract such an xyz or use the pxyz
file you created previously for QM/MM setup.

For example:
pxyz_2vxyz alpha0.pxyz [grep -v MW3[grep -v MW2 [chunk 2 10000 > gmmm.xyz

b) Use refgen_stepl_cord and molecule information file to generate a ref file. The forces are
undefined after this step.

refgen_stepl_cord molinfo.ala gmmm.xyz > alphaO.step1.ref

c) Update the forces of the ref file generated in the last step.

34

There are a series commands that can do this. One can easily add up forces from different code such
as DFT and dispersion correction. Since the update script always read in the initial force value in the
ref file and add the new component to it.

ref _upd_pqgs_frc alphaO.grad alphaO.stepl.ref > temp.ref

d) Update the torque and net forces using refupdnet.
ref_upd_net temp.ref > templ.ref

e) You may need to fix dummy sites with the xyz_add_miste script

f) At the end, you will have to fix the line numbers since the refgen_step1_cord script also left this as
TBD (to be determined)

ref_fix_linenu temp1l.ref > alphaO.ref
For example, you can do all of the above in one line: (assuming PQS was used to calculate the forces)

pxyz_2vxyz alpha0.pxyz |grep -v MW3| grep -v MW2 |chunk 2 10000 | refgen_stepl_cord molinfo.ala
|ref_upd_pgs_frc alphaO.grad|ref _upd_net |xyz_add_msite Ow Hw Hw Mw |ref fix_msite Mw
|ref fix_linenu > alphaO.ref

35

