![]() ![]() ![]() ![]() ![]() ![]() ![]()
|
Force Keyword
|
| Description |
This calculation type keyword requests a single calculation of the forces on the nuclei (i.e., the gradient of the energy). The dipole moment is also computed (as a proper analytic derivative of the energy for MP2, CC, QCI and CI) [117,219].
| Options |
EnOnly
Computes the forces by numerically
differentiating the energy once. It is the default for all methods for which
analytic gradients are unavailable. Note that this procedure exhibits some
numerical instability, so care must be taken that an optimal step size is
specified for each case.
Restart
Restarts numerical evaluation of the forces.
StepSize=N
Sets the step size used in numerical
differentiation to 0.0001*N. The units are Angstroms by default unless
Units=Bohr has been specified. The default step size is 0.01 Å.
StepSize is valid only in conjunction with EnOnly.
| Availability |
Analytic gradients are available for all SCF wavefunctions, all DFT methods, CIS, MP2, MP3, MP4(SDQ), CID, CISD, CCD, QCISD, CASSCF, and all semi-empirical methods. For other methods, the forces are determined by numerical differentiation.
| Examples |
The forces on the nuclei appears in the output as follows (this sample is from a calculation on water):
***** AXES RESTORED TO ORIGINAL SET *****
-------------------------------------------------------------------
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
-------------------------------------------------------------------
1 8 -.049849321 .000000000 -.028780519
2 1 .046711997 .000000000 -.023346514
3 1 .003137324 .000000000 .052127033
-------------------------------------------------------------------
MAX .052127033 RMS .031211490
-------------------------------------------------------------------
Internal Coordinate Forces (Hartree/Bohr or radian)
Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J
-------------------------------------------------------------------
1 O
2 H 1 -.023347( 1)
3 H 1 -.023347( 2) 2 -.088273( 3)
-------------------------------------------------------------------
MAX .088272874 RMS .054412682
The forces are determined in the standard orientation, but are restored to the original (Z-matrix) set of axes before printing (as noted in the output). This is followed by a calculation of the corresponding derivatives with respect to the internal coordinates (lengths and angles used in the Z-matrix) when internal coordinates are in use. The forces are followed in each case by their maximum and root-mean-square values.