next up previous contents index
Next: tbp n Up: Non-bonded Interactions Previous: vdw n   Contents   Index

.

 where n is the number of pair potentials to be entered. There follows n records, each specifying a particular pair potential in the following manner:


		 atmnam 1 		 a8 		 first atom type

atmnam 2 a8 second atom type
key a4,1X potential key. See table 4.12
variable 1 real potential parameter see table4.12
variable 2 real potential parameter see table4.12
variable 3 real potential parameter see table4.12
variable 4 real potential parameter see table4.12
variable 5 real potential parameter see table4.12

The variables pertaining to each potential are described in table 4.12.Note that there is an empty column after the potential key. This means that the potential paramaters are enterd in columns 22 to 81. Note that any pair potential not specified in the FIELD file, will be assumed to be zero. Note also that the Sutton-Chen potential for metals is classified as a pair potential for input purposes.


Table 4.12: Definition of pair potential functions and variables
key potential type Variables (1-5) functional form
               
12-6 12-6 $A$ $B$       $U(r)=\left
(\frac{A}{r^{12}}\right)-\left(\frac{B}{r^{6}}\right)$
               
lj Lennard-Jones $\epsilon$ $\sigma$       $U(r) =
4\epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right
]$
               
nm n-m $E_{o}$ $n$ $m$ $r_{0}$   $U(r)=\frac{E_{o}}{(n-m)}\left[m\left
(\frac{r_{o}}{r}\right)^{n}-n\left(\frac{r_{o}}{r}\right)^{m}\right
]$
               
buck Buckingham $A$ $\rho$ $C$     $U(r)=A~\exp\left(-\frac{r}{\rho}\right)-\frac{C}{r^{6}}$
               
bhm Born-Huggins $A$ $B$ $\sigma$ $C$ $D$ $U(r)=A~\exp[B(\sigma-r)]-\frac{C}{r^{6}}-\frac{D}{r^{8}}$
  -Meyer            
               
hbnd 12-10 H-bond $A$ $B$       $U(r)=\left(\frac{A}{r^{12}}\right)-
\left(\frac{B}{r^{10}}\right)$
               
snm Shifted force$^{\dagger}$ $E_{o}$ $n$ $m$ $r_{0}$ $r_{c}$$^{\ddagger}$ $U(r)=\frac{\alpha E_{o}}{(n-m)}\times$
  n-m [27]           $\left [m\beta^{n}\left \{ \left (\frac{r_{o}}{r}\right )^{n}-
\left(\frac{1}{\g...
...frac{r_{o}}{r}\right )^{m}-\left(\frac{1}{\gamma}\right)^{m}\right \}
\right ]$
              $+\frac{nm\alpha E_{o}}{(n-m)} \left ( \frac{r-\gamma r_{o}}
{\gamma r_{o}}\righ...
...frac{\beta}{\gamma}\right)^{n}
-\left(\frac{\beta}{\gamma}\right )^{m}\right \}$
               
mors Morse $E_{0}$ $r_{0}$ $k$     $U(r)=E_{0}[\{1-\exp(-k(r-r_{0}))\}^{2}-1]$
               
stch Sutton-Chen $\epsilon$ $a$ $n$ $m$ $C$ $U_{i}(r)=\epsilon\left[\frac{1}{2}\sum_{j\ne i}\left(\frac{a}{r_{ij}}\right )^{n}
-C\sqrt{\rho_{i}}\right ]$
              $\rho_{i}=\sum_{j\ne i}\left(\frac{a}{r_{ij}}\right )^{m}~~~~~~~$
               
tab Tabulation           tabulated potential
               

$^{\dagger}$ Note: in this formula the terms $\alpha$, $\beta$ and $\gamma$ are compound expressions involving the variables $E_{o},n,m,r_{0}$ and $r_{c}$. See section 2.3.1 for further details.

$^{\ddagger}$ Note: $r_{c}$ defaults to the general van der Waals cutoff (rvdw or rcut) if it is set to zero or not specified or not specified in the FIELD file.


The specification of three body potentials is initiated by the directive:


next up previous contents index
Next: tbp n Up: Non-bonded Interactions Previous: vdw n   Contents   Index
W Smith 2003-05-12