next up previous contents index
Next: Barostats Up: Integration algorithms Previous: Berendsen Thermostat   Contents   Index

Gaussian Constraints

Kinetic temperature can be made a constant of the equations of motion by imposing an additional constraint on the system. If one writes the equations of motions as :

$\displaystyle {d \mbox{$\underline{r}$}(t) \over d t}$ $\textstyle =$ $\displaystyle \mbox{$\underline{v}$}(t)$
$\displaystyle {d \mbox{$\underline{v}$}(t)
\over d t}$ $\textstyle =$ $\displaystyle {\mbox{$\underline{f}$}(t)\over m} - \chi(t) \mbox{$\underline{v}$}(t)$ (2.186)


with the temperature constraint

\begin{displaymath}
{d{\cal T}\over dt} \propto {d \over dt}\left(\sum_i (m_i v_...
...mbox{$\underline{v}$}_i(t)\cdot\mbox{$\underline{f}$}_i(t) = 0
\end{displaymath} (2.187)

then choosing

\begin{displaymath}
\chi = {\sum_i m_i \mbox{$\underline{v}$}_i(t).\mbox{$\underline{f}$}_i(t) \over \sum_i m_i^2 v_i^2(t)}
\end{displaymath} (2.188)

minimizes the ``least squares'' differences between the Newtonian and constrained trajectories. Following Brown and Clarke [37] the algorithm is implemented by calculating $\eta = 1/(1+ \chi\Delta
t/2)$

$\displaystyle \eta$ $\textstyle \leftarrow$ $\displaystyle \sqrt{{T_{\rm ext}\over {\cal T}}}$
$\displaystyle \mbox{$\underline{v}$}(t + {1\over 2} \Delta t)$ $\textstyle \leftarrow$ $\displaystyle (2\eta-1) \mbox{$\underline{v}$}(t-{1\over2}\Delta t) + \eta\Delta t {\mbox{$\underline{f}$}(t)\over m}$
$\displaystyle \mbox{$\underline{r}$}(t+\Delta t)$ $\textstyle \leftarrow$ $\displaystyle \mbox{$\underline{r}$}(t) + \Delta t \; \mbox{$\underline{v}$}(t+{1\over 2}\Delta t)$ (2.189)


where ${\cal T}$ is obtained from standard Verlet leapfrog integration. Only one iteration is needed (two if the system has bond constraints) to constrain the instantaneous temperature to exactly $T_{\rm ext}$ however energy is not conserved by this algorithm.

The algorithm is implemented in the DL_POLY routines NVT_E0 and NVT_E1. The latter is for systems with bond constraints.


next up previous contents index
Next: Barostats Up: Integration algorithms Previous: Berendsen Thermostat   Contents   Index

W Smith 2003-05-12